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Abstract

A simple mathematical model following the suggestion of Smithberg and Landis has been created to predict the heat

transfer coefficients for the case of a fully developed turbulent flow in a spirally corrugated tube combined with a

twisted tape insert. The heat transfer can be predicted from the combined effects of the axial and the tangential

boundary layer flows coupled with an additional ‘‘vortex mixing’’ effect near the wall through the solution of the

corresponding momentun and energy transfer equations. The ‘‘wall roughness’’ has an effect simultaneously on the

axial velocity, secondary fluid motion and the resulting swirl mixing. The model reflects the influence of the ‘‘wall

roughness’’ and the twisted tape on the thermal resistances of the helicoidal core flow, twisting boundary layer flow and

the viscous sublayer near the wall. The calculated heat transfer coefficients have been compared to 544 experimental

points obtained from 57 tubes tested. Four hundred thirty-eight points (80.5%) have a relative difference of less than

±15% and 106 points (19.5%) have a relative difference between ±(15–20)%.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Compound heat transfer; Corrugated tubes with twisted tape inserts; Heat transfer coefficient; Single-phase turbulent flow
1. Introduction

It has been well known for many years that the

performance of heat exchangers, for single-phase flows

in particular, can be substantially improved by many

augmentation techniques [1]. They are classified into

passive and active techniques. The former use surface

modification or an additional device incorporated into

the channel. Typical examples of passive augmentation

techniques are surface roughness, displaced promoters

and vortex generators. Surface roughness has been used

to reduce the thickness of the boundary layer close to the

surface and to introduce better fluid mixing. Displaced

promoters include inserts that alter the flow mechanism

near the surface by disturbing the core flow. A vortex
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flow can be created through coiled wires, stationary

propellers or twisted tapes.

Twisted tape inserts as passive enhancement devices

have been used for almost a century. After their early

application in the flue-ways of tube-fire boilers, today

the focus of energy conservation has generated renewed

interest in the use of twisted tape inserts. It is important

to note that the wall roughness elements influence the

flow pattern only across a relatively thin fluid layer close

to the wall of the tube. In contrast to small roughness

elements and ribs, the twisted tape inserts cause altera-

tion in the entire flow pattern creating rotating and/or

secondary flows [2]. In general the heat transfer en-

hancement is attributed to several mechanisms: in-

creased flow path length, increased flow velocity/reduced

hydraulic diameter, tape-generated swirl motion and

tape fin effects. The fin effects are shown to be less sig-

nificant for a snug to loose fitting twisted tapes [3,4].

Geometrically a twisted tape insert is characterized by
ed.
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Nomenclature

A surface area (m2)

D tube diameter (m)

e ridge height (m)

H pitch of the twisted tape (m)

L length of the tube (m)

l mixing length (m)

_mm mass flow rate (kg s�1)

p pitch of ridging (m)

Dp pressure drop (Pa)

r0 tube radius (m)

U axial velocity component (m s�1)

u� shear velocity ðsw=qÞ1=2 (m s�1)
V total velocity vector (m s�1)

y distance from the wall (m)

Greek symbols

b helix angle of rib (�)
d thickness of the tape (m)

em Eddy kinematic viscosity (m2 s�1)

m kinematic viscosity (m2 s�1)

q fluid density (kgm�3)

s shear stress (Pa)

Dimensionless groups

eþS dimensionless equivalent sand grain rough-

ness ðeSu�=mÞ

f Fanning friction factor ð2sw=ðqU 2
mÞÞ

lþ dimensionless mixing length ðlu�=mÞ
Re Reynolds number ðUmD=mÞ
rþ0 dimensionless tube radius ðr0u�=mÞ
Uþ dimensionless axial velocity ðU=u�Þ
yþ dimensionless distance from the wall ðyu�=mÞ
b� b=90
g dimensionless distance from the wall ðy=r0Þ
Dg dimensionless shift ðDy=r0Þ

Subscripts

a axial

c core region

D buffer zone

H hydraulic

i inside diameter

m mean value

max maximum value

t tangential

v vortex

w wall

Fig. 1. Geometrical characteristics of a corrugated tube and

twisted tape insert.
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the dimensionless twist ratio H=Di and the dimensionless

thickness d=Di of the tape [3]. The smaller the twist ratio

the greater the heat transfer enhancement [5]. A lower

bound for the enhancement effect corresponds to

H=Di ¼/ or a straight tape insert which partitions the

tube into two semicircular segments.

It is well known that two or more of the existing

techniques can be utilized simultaneously to produce

an enhancement larger than that produced by only

one technique. The combination of different techniques

acting simultaneously is known as compound enhance-

ment. Interactions between different enhancement

methods contribute to greater values of the heat transfer

coefficient compared to the sum of the corresponding

values for the individual techniques used alone. The

recent articles [6–9] report on an experimental investi-

gation to see whether or not heat transfer can be en-

hanced by the multiplicative effect of a corrugated tube

combined with a twisted tape insert. The geometrical

characteristics of the corrugated tube and twisted tape

insert are shown in Fig. 1. Despite of the fact that a

comprehensive study was conducted on a variety of

corrugated tubes combined with twisted tapes, a lack of

sufficient knowledge about the flow mechanism does not

permit the prediction of the friction factors and heat

transfer coefficients by analytical methods.
The purpose of this paper is to create a simple

mathematical model to predict the heat transfer coeffi-

cients for the case of a fully developed single-phase

turbulent flow in a corrugated tube combined with a

twisted tape insert.
2. The mathematical model

The model refers to heat transfer for a fully devel-

oped one-dimensional turbulent pipe flow in a corru-

gated tube combined with a twisted tape insert. The

results are obtained if the following assumptions hold:

(a) the fluid is single-phase, incompressible and its phys-

ical properties are constant;
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(b) the transport processes are time independent;

(c) the turbulent flow is both hydrodynamically and

thermally stabilized;

(d) the axial conduction and viscous dissipation in the

fluid are neglected.

The physical model used in the friction factor anal-

ysis [10] also serves as a basis for the heat transfer pre-

dictions and the complexity of the results is a function of

the boundary layer details and the Prandtl number ef-

fects considered. The total heat transfer in the absence of

tape fin effects will therefore be due to the additive effects

of the tube wall boundary layer flow and the energy

interchange caused by vortex mixing. An investigation

of Migai [11] revealed that the thermal resistance dis-

tribution of the fluid in the different parts of the

boundary layer is quite ununiform and has a very strong

Prandtl number dependence. For example, for Re ¼ 104

and Pr ¼ 0:7 the thermal resistances of the laminar

sublayer, buffer zone and turbulent core are respectively

32.3%, 52.0% and 15% of the total thermal resistance;

for Re ¼ 104 and Pr ¼ 10:0––these quantities are 74.6%,
22.0% and 3.4%, respectively. It is very remarkable that

the bigger part of the total thermal resistance for

Pr ¼ 0:7 is distributed in the buffer zone and turbulent
core instead of in the laminar sublayer. On the other

hand, it is well known that when Re increases the

thickness of the laminar sublayer gradually decreases

and it has to be expected that the thermal resistance of

the sublayer will be smaller than the pure axial flow due

to the superposed vortex motion. When ‘‘wall rough-

ness’’ and vortex fluid motion are combined this will

cause additional decrease in the thickness of the laminar

sublayer. From the above it follows that for gases

(Pr ¼ 0:7) the thermal resistance of the laminar sublayer
can be neglected without any substantial error whereas

for liquids (Pr > 1) it cannot be ignored and has to be

taken into account. This idea has been very successfully

implemented to predict the heat transfer coefficients for

turbulent flow in a smooth pipe with a twisted tape in-

sert [12]. Therefore, the model for the heat transfer

process has to reflect both the effect of the presence of

the ‘‘wall roughness’’ and twisted tape insert and the

change in the thermal resistance of the viscous sublayer.

To evaluate the simultaneous impact of the ‘‘wall

roughness’’ and twisted tape insert on the total thermal

resistance of the fluid one must take into account the

increased wall heat flux due to the axial, tangential and

vortex mixing tube flows

qtot ¼ qw ¼ qa þ qt þ qv ¼ qa;t þ qv ð1Þ

and

St ¼ qw
qcpUmðTw � TmÞ

¼ qa;t þ qv
qcpUmðTw � TmÞ

¼ Sta;t þ Stv:

ð2Þ
The heat transfer coefficients Sta;t and Stv can be de-

scribed as follows:

(i) The heat transfer attributable to axial turbulent

tube flow––Sta ¼ Nua=ðReH PrÞ. This contribution is ob-
tainable through the evaluation of the thermal resistance

of the axial turbulent tube flow. The latter can be de-

composed into two components:

(a) the thermal resistance of the core region, 2e=Di <
g6 1, St�1c ,

(b) the thermal resistance of the fluid nearest to the wall

and surrounding the roughness elements in the re-

gion 06 g6 2e=Di, including the thermal resistance

of the viscous sublayer and buffer zone, St�1w .

Having this in mind one can describe the thermal

resistance of the axial tube flow in the form of a Stanton

number as

St�1a ¼ qcpUm

qa
ðTw � TmÞ ¼ St�1w þ St�1c : ð3Þ

The thermal resistance of the turbulent core, St�1c , can be
obtained through the value of the Lyon’s integral [13]

Nuc for prescribed value of ReH as

Nu�1c ¼ 2

Z 1

0

R g
1�gð1� gÞUþðgÞdg

� �2
ð1� gÞ 1þ Pr

Pri
em
m

� � dg ð4Þ

where the distributions of UþðgÞ and em=mðgÞ are already
available. The turbulent Prandtl number Prt is defined
[14] as

Prt ¼ 0:909
Bþ

26
; g ¼ 0; ð5Þ

Prt ¼ 0:909
1� expð�grþ0 =26Þ
1� expð�grþ0 =BþÞ ; 0 < g6 gw; ð6Þ

Prt ¼ 0:909; gw < g6 1; ð7Þ

Bþ ¼ Pr�0:5
X5
1

Ckðlog10 PrÞ
k�1

; 0:02 < Pr < 15; ð8Þ

where C1 ¼ 34:96, C2 ¼ 28:79, C3 ¼ 33:95, C4 ¼ 6:33,
C5 ¼ �1:186.
The thermal resistance of the fluid nearest to the wall

and surrounding the roughness elements, St�1w , is taken
into account only for liquids, Pr > 1. One of the effects

of the twisted tape insert and the ‘‘wall roughness’’ is the

reduction of the thermal resistance of the flow nearest

the wall, which gradually diminishes when Reynolds and

Prandtl numbers increase. This resistance, denoted as

DTþ
S , has been evaluated through integrating Eq. (20)

for g ¼ gv;S and linear distribution for q=qw. Thus
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DTþ
S ¼ Tþ

w � Tþ
S ¼

Z gv;S

0

ð1� gÞ
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg; ð9Þ

where rþ0 ¼ 0:5ReHðDi=DHÞ
ffiffiffiffiffiffiffiffi
f =2

p
. It has been assumed

that gv;S / Pr�0:4 and it can be calculated as gv;S ¼
ð4gD þ DgÞPr�0:4, but no smaller than 0.25e=D. The
Stanton number St�1w is calculated from

St�1w ¼ ðTþ
w � Tþ

S Þ
ffiffiffiffiffiffiffiffi
2=f

p
: ð10Þ

When the corrugated tube acts alone (without a

twisting tape insert) the wall layer thermal resistance

St�1w depends essentially on the particular type of wall

roughness and can be defined from [15]

St�1w ¼ Tþ
w � Tþ

effiffiffiffiffiffiffiffiffiffiffiffi
ðf =2Þ

p ¼ gðeþ; PrÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=f Þ

p
¼ St�1 � St�1c : ð11Þ

It is calculated as the difference between the total ther-

mal resistance and the core thermal resistance. Since the

function gðeþ; PrÞ is sensitive to the shape of the ridges
or ribs it has been derived using experimental data for f
and St only from the corrugated tubes used in the ex-

perimental program [6–9]. This function could be related

to the following characteristic geometrical parameters of

the tubes to obtain a simple power law correlation in the

form

gðeþ; PrÞPr�0:6 ¼ 5:334Re0:089ðe=DiÞ�0:113ðp=eÞ�0:264b�0:180
� ;

p=eP 9:0; ð12aÞ

and

gðeþ; PrÞPr�0:6 ¼ 299:6Re0:131ðe=DiÞ0:009ðp=eÞ�2:056b2:655� ;

p=e ¼ 7:0–9:0: ð12bÞ

To verify the validity of the g-function, Eq. (12), in
the case of a corrugated tube acting alone, heat transfer

coefficients (St) have been calculated from Eqs. (3)–(8),

(11) and (12) and compared with 114 experimental

points [6–9]. Ninety three points (81.6%) showed a rel-

ative difference of less than ±10%; for 18 points (15.8%)

this difference is ±(10–15)% and for the remaining only

three points the difference is greater than ±15%.

It has been assumed that when corrugated tubes are

combined with twisted tape inserts the thermal resis-

tance of the wall layer calculated from Eq. (11) should

decrease. In this regard, the thermal resistance calcu-

lated from Eq. (10) has been restricted not to exceed that

one calculated from Eq. (11).

(ii) The heat transfer attributable to axial and tan-

gential tube wall flows––Sta;t. To evaluate the contribu-
tion due to the axial and tangential tube wall flows a

Reynolds analogy is used [2] assuming that an effective

shear stress sa;t can be defined which is dependant on the
total velocity vector at the edge of the buffer zone
sa;t
sa

¼ VS
Um

¼ 1

 
þ ð1� gDÞ

2p2

ðH=DiÞ2

!0:5

ð13Þ

and the heat transfer will increase in the same propor-

tion

qa;t
qa

¼ Sta;t
Sta

¼ 1

 
þ ð1� gDÞ

2p2

ðH=DiÞ2

!0:5

: ð14Þ

(iii) The heat transfer attributable to the vortex mix-

ing flow––Stv. As in the friction factor analysis [10] it is
assumed that the principal boundary layer contributions

to the vortex mixing arise from the viscous sublayer and

the buffer zone but the energy transport is increased

additionally due to the presence of the surface roughness

at a distance of gv > gD. The heat flux convected from the

boundary layer into the main stream [2] is

d _QQv ¼ cp d _mmðT � TSÞ;

for each half of the tube, where d _mm ¼ qVt drdx and

dqv ¼
d _QQv

pr0 dx
¼ qcpVtðT � TSÞ

p
dg: ð15Þ

Substituting Vt from Eqs. (8) and (9) [10],

Vt ¼
ð1� gDÞ

gD

pUm

ðH=DiÞ
g; 06 g6 gD;

Vt ¼
pUm

ðH=DiÞ
ð1� gÞ; gD6 g6 gv;

and integrating Eq. (15) in the limits 06 g6 gv

qv ¼
qcp
p

Z gv

0

VtðT � TSÞdg

¼ qcp
p

Z gD

0

VtðT



� TSÞdg þ
Z gv

gD

VtðT � TSÞdg
�
;

ð16Þ

where gD ¼ 30
ffiffi
2

p

ReH
ffiffi
f

p
ðDi=DHÞ

. It is assumed that the distance

gv to be 1.5gD but no smaller than 0:5e=Di; gv ¼
1:5gD P 0:5e=Di. Introducing the Stanton number,

Stv ¼
qv

qcpUmðTw � TmÞ
¼ ð1� gDÞ

gDðH=DiÞ

Z gD

0

T � TS
Tw � Tm

gdg

þ 1

ðH=DiÞ

Z gv

gD

T � TS
Tw � Tm

ð1� gÞdg

or

Stv ¼
ð1� gDÞ
gDðH=DiÞ

Z gD

0

Tþ � Tþ
S

Tþ
w � Tþ

m

gdg

þ 1

ðH=DiÞ

Z gv

gD

Tþ � Tþ
S

Tþ
w � Tþ

m

ð1� gÞdg; ð17Þ

where
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Tþ
w � Tþ

m ¼
ffiffiffiffiffiffiffiffi
f =2

p
St

;

Tþ � Tþ
S ¼ ðTþ

w � Tþ
S Þ � ðTþ

w � TþÞ ¼ DTþ
S � DTþ:

The temperature differences DTS and DTþ can be ob-

tained from integration of the usual heat flux relation

q ¼ �ðaþ eHÞqcp
dT
dy

; ð18Þ

in dimensionless form

q
qw

¼ �
1þ Pr

Prt
em
m

� �
rþ0 Pr

oTþ

og
: ð19Þ

Thus,

DTþ
S ¼ Tþ

w � Tþ
S ¼

Z gv

0

q=qw
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg; ð20Þ

DTþ ¼
Z g

0

q=qw
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg: ð21Þ

Using the linear distribution for q=qw, Eq. (17) yields

Stv ¼
ð1� gDÞSt

gDðH=DiÞ
ffiffiffiffiffiffiffiffi
f =2

p g2D
2

Z gv

0

ð1� gÞ
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg
0
@

�
Z gD

0

Z gv

0

ð1� gÞ
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg
0
@

1
Agdg

1
A

þ St

ðH=DiÞ
ffiffiffiffiffiffiffiffi
f =2

p ðgv

0
@ � gDÞ 1



� 1

2
ðgv � gDÞ

�

	
Z gv

0

ð1� gÞ
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg

�
Z gv

gD

Z g

0

ð1� gÞ
1
rþ
0

1
Pr þ 1

Prt
em
m

� � dg
0
@

1
Að1� gÞdg

1
A:

ð22Þ
Table 1

Values of the characteristic parameters of the corrugated tubes

Tube Di (mm) e (mm) p (mm) b

3010 13.90 0.312 5.76 8

3020 12.44 0.515 4.48 8

3040 13.39 0.497 5.77 8

3050 13.15 0.593 5.06 8

3070 13.66 0.622 8.12 7

4020 13.53 0.507 4.55 7

4030 13.73 0.781 5.82 6

4040 13.68 0.557 5.97 6

4050 13.38 0.581 5.08 7

2010 13.68 0.315 6.67 9

2040 13.65 0.440 6.01 9

2070 13.59 0.464 8.55 9
The model discussed here comprises the following

cases concerning the calculation of the heat transfer

coefficient for a fully developed turbulent flow in a pipe:

(a) Dg ¼ 0; H=Di ¼ 0 and St�1w ¼ 0––the model calcu-

lates the friction factor and heat transfer coefficient

for a smooth pipe [16];

(b) Dg > 0, H=Di ¼ 0 and St�1w > 0––the model calcu-

lates the friction factor and heat transfer coefficient

for a corrugated pipe [15];

(c) Dg ¼ 0,H=Di > 0 and St�1w > 0––themodel calculates

the friction factor and heat transfer coefficient for a

smooth pipe combined with a twisted tape insert [12];

(d) Dg > 0, H=Di > 0 and St�1w > 0––the model calcu-

lates the friction factor and heat transfer coefficient

for a corrugated tube combined with a twisted tape

insert.
3. Results and discussion

The heat transfer coefficients (transformed as Stan-

ton numbers) have been calculated using Eqs. (2)–(22)

and compared with 544 experimental points obtained

from 57 corrugated tubes combined with twisted tape

inserts. The values of the geometrical parameters of the

corrugated tubes are presented in Table 1. Two hundred

sixty-eight points (49.3%) have a relative difference of

less than ±10%, for 170 points this difference is ±10–

15%, and for the remaining 106 points the difference is

±15–20%. The numerical results for the heat transfer

coefficients (transformed as Nusselt numbers) together

with the experimental data of the tubes studied (corru-

gated tubes combined with twisted tape inserts) are

presented in Figs. 2–13. Taking into account the ex-

perimental error in the measurements, this agreement

should be considered as fairly acceptable. Because of the

lack of other experimental data of this kind (for corru-

gated tubes with twisted tape inserts) an attempt to

verify the model has been made with the study of Bergles
(�) e=Di p=e b�

2.4 0.0224 18.46 0.916

3.4 0.0414 8.70 0.927

2.2 0.0371 11.61 0.913

3.0 0.0451 8.53 0.922

9.3 0.0456 13.05 0.881

2.2 0.0375 8.97 0.802

8.0 0.0569 7.45 0.755

7.4 0.0407 10.73 0.749

0.1 0.0434 8.74 0.779

0.0 0.0230 21.17 1.000

0.0 0.0322 13.66 1.000

0.0 0.0341 18.43 1.000



Fig. 2. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (3010� H=Di ¼ 0;

3011� H=Di ¼ 15:11; 3012� H=Di ¼ 12:09; 3013� H=Di ¼
7:63; 3014� H=Di ¼ 5:76; 3015� H=Di ¼ 4:75).

Fig. 3. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (3020� H=Di ¼ 0;

3021� H=Di ¼ 16:88; 3022� H=Di ¼ 13:50; 3023� H=Di ¼
8:52; 3024� H=Di ¼ 6:43; 3025� H=Di ¼ 5:23).

Fig. 4. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (3040� H=Di ¼ 0;

3041� H=Di ¼ 15:68; 3042� H=Di ¼ 12:54; 3043� H=Di ¼
7:91; 3044� H=Di ¼ 5:97; 3045� H=Di ¼ 4:85).

Fig. 5. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (3050� H=Di ¼ 0;

3051� H=Di ¼ 15:97; 3052� H=Di ¼ 12:77; 3053� H=Di ¼
8:06; 3054� H=Di ¼ 6:08; 3055� H=Di ¼ 4:94).
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et al. [17] where heat transfer coefficients for straight and

swirl flow in rough tubes with twisted tape inserts were

reported, Fig. 14. The authors suggested an equivalent

sand grain roughness of eS=Di ¼ 0:005–0.015. Giving
different values of eS=Di for different Reynolds numbers

the friction factors have been calculated through the

model discussed in [10]. Since the roughness was sug-

gested as one-dimensional (equivalent sand grain

roughness) the model presented in [18] has been used to
predict the heat transfer coefficient in a rough tube

(without twisted tape insert). In this case, the g-function
has been determined through the experimental data of

[17] in the form

gðeþS ; PrÞ ¼ 5:9668ðeþS Þ
0:246 Pr0:6: ð23Þ

The calculated values of the heat transfer coefficient

for the rough tube acting alone are very close to the

experimental data (relative difference of less than ±5%)



Fig. 6. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (3070� H=Di ¼ 0;

3071� H=Di ¼ 15:38; 3072� H=Di ¼ 12:31; 3073� H=Di ¼
7:77; 3074� H=Di ¼ 5:86; 3075� H=Di ¼ 4:76).

Fig. 7. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (4020� H=Di ¼ 0;

4021� H=Di ¼ 15:52; 4022� H=Di ¼ 12:42; 4023� H=Di ¼
7:83; 4024� H=Di ¼ 5:91; 4025� H=Di ¼ 4:80).

Fig. 8. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (4030� H=Di ¼ 0;

4031� H=Di ¼ 15:30; 4032� H=Di ¼ 12:24; 4033� H=Di ¼
7:72; 4034� H=Di ¼ 5:83; 4035� H=Di ¼ 4:73).

Fig. 9. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (4040� H=Di ¼ 0;

4041� H=Di ¼ 15:35; 4042� H=Di ¼ 12:28; 4043� H=Di ¼
7:75; 4044� H=Di ¼ 5:85; 4045� H=Di ¼ 4:75).
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whereas for the combination of a rough tube of this kind

and a twisted tape insert the calculated values are (20–

25)% higher compared to the experimental results [17],

Fig. 14.
4. Conclusions

The results of the present study can be summarized as

follows:
(1) A simple mathematical model has been created to

predict the heat transfer coefficients for the case of

a fully developed turbulent flow in a spirally corru-

gated tube combined with a twisted tape insert

which is an extension and modification of the idea

of Smithberg and Landis to predict heat transfer co-

efficients for turbulent flow in a smooth tube with a

twisted tape insert.



Fig. 13. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (2070� H=Di ¼ 0;

2071� H=Di ¼ 15:45; 2072� H=Di ¼ 12:36; 2073� H=Di ¼
7:80; 2074� H=Di ¼ 5:89).

Fig. 10. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (4050� H=Di ¼ 0;

4051� H=Di ¼ 15:69; 4052� H=Di ¼ 12:55; 4053� H=Di ¼
7:92; 4054� H=Di ¼ 5:98; 4055� H=Di ¼ 4:86).

Fig. 11. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (2010� H=Di ¼ 0;

2011� H=Di ¼ 15:35; 2012� H=Di ¼ 12:28; 2013� H=Di ¼
7:75; 2014� H=Di ¼ 5:85).

Fig. 12. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results (2040� H=Di ¼ 0;

2041� H=Di ¼ 15:38; 2042� H=Di ¼ 12:30; 2043� H=Di ¼
7:76; 2044� H=Di ¼ 5:86).

392 V. Zimparov / International Journal of Heat and Mass Transfer 47 (2004) 385–393
(2) The model reflects the influence of the ‘‘wall rough-

ness’’ and the twisted tape on the thermal resistances

of the helicoidal core flow, twisting boundary layer

flow and the viscous sublayer near the wall.

(3) The calculated heat transfer coefficients have been

compared with 544 experimental points obtained

from 57 tubes tested. Four hundred thirty-eight

points (80.5%) have a relative difference of less than

±15% and for the remaining 106 points this differ-
ence is ±(15–20)%. To verify the validity of the

model for another type ‘‘wall roughness’’ the calcu-

lated heat transfer coefficients for turbulent flow in

rough tubes (sand grain roughness) with twisted tape

inserts have been compared with the experimental

data of Bergles et al. [17]. The agreement between

predicted and experimental data is fairly good.

(4) The model comprises the possibilities to predict the

heat transfer coefficients for the cases of a turbulent



Fig. 14. Nusselt number vs. Reynolds number. Comparison

between computed and experimental results of [5] (y ¼
0:5H=Di).
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flow in a smooth pipe; a smooth pipe with a twisted

tape insert; a corrugated tube and a corrugated tube

combined with a twisted tape insert.
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